The Beale-Kato-Majda criterion to the 3D Magneto-hydrodynamics equations

نویسندگان

  • Qionglei Chen
  • Changxing Miao
  • Zhifei Zhang
چکیده

Here u, b describe the flow velocity vector and the magnetic field vector respectively, p is a scalar pressure, ν > 0 is the kinematic viscosity and η > 0 is the magnetic diffusivity, while u0 and b0 are the given initial velocity and initial magnetic field respectively, with ∇ · u0 = ∇ · b0 = 0. If ν = η = 0, (1.1) is called the ideal MHD equations. Using the standard energy method, it can be easily proved that for given initial data (u0, b0) ∈ Hs(R3) with s > 12 , there exists a positive time T = T (‖(u0, b0)‖Hs) and a unique smooth solution (u(t, x), b(t, x)) on [0, T ) to the MHD equations satisfying

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Lower Bound on Blowup Rates for the 3d Incompressible Euler Equation and a Single Exponential Beale-kato-majda Estimate

We prove a Beale-Kato-Majda criterion for the loss of regularity for solutions of the incompressible Euler equations in Hs(R3), for s > 5 2 . Instead of double exponential estimates of Beale-Kato-Majda type, we obtain a single exponential bound on ‖u(t)‖Hs involving the dimensionless parameter introduced by P. Constantin in [2]. In particular, we derive lower bounds on the blowup rate of such s...

متن کامل

Existence theorem and blow-up criterion of the strong solutions to the Magneto-micropolar fluid equations

In this paper we study the magneto-micropolar fluid equations in R, prove the existence of the strong solution with initial data in H(R) for s > 3 2 , and set up its blow-up criterion. The tool we mainly use is Littlewood-Paley decomposition, by which we obtain a Beale-Kato-Majda type blow-up criterion for smooth solution (u, ω, b) which relies on the vorticity of velocity ∇× u only.

متن کامل

A Blowup Criterion for Ideal Viscoelastic Flow

We establish an analog of the Beale–Kato–Majda criterion for singularities of smooth solutions of the system of PDE arising in the Oldroyd model for ideal viscoelastic flow. It is well known that smooth solutions of the initial value problem associated with Euler’s equations { ∂tu+ (u · ∇)u = −∇p ∇ · u = 0 , (x, t) ∈ R 3 × (0, T ) (1.1) exist for some finite time T > 0. Here u = u(x, t) ∈ R and...

متن کامل

Remarks on the blow-up criterion of the 3D Euler equations

In this note we prove that the finite time blow-up of classical solutions of the 3-D homogeneous incompressible Euler equations is controlled by the Besov space, Ḃ0 ∞,1, norm of the two components of the vorticity. For the axisymmetric flows with swirl we deduce that the blow-up of solution is controlled by the same Besov space norm of the angular component of the vorticity. For the proof of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007